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ABSTRACT 

In this paper it is shown, how can be synthesized models 

of the optimal control on the basis of samples or 

precedents. The proposed BOMD approach is based on 

empirical induction and directed to obtaining regularities 

in the form of empirical optimization models which are 

synthesized in analytical form. We follow the 

Kolmogorov idea about regularity as non-randomness. 

This allows us to estimate the probability of non-random 

model selection from the set of admissible models which 

are consistent to the sample or to given initial data. The 

proposed methods and algorithms can be applied to solve 

wide range of tasks of intelligent control, in particular, in 

Robotics. 
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1. Introduction 
 

Intelligent Control methods are classified as a rule in the 

following categories: Model-based methods, Knowledge-

based methods, Fuzzy logic methods, Neural network 

methods, Hybrid methods, and other methods [4, 10, and 

11]. Unlike to other approaches, Building Optimization 

Models from Data (BOMD) is directed to building or 

synthesis of optimization models by data and knowledge. 

These data and knowledge can be presented in various 

forms, mainly as experimental observations or samples 

and expert knowledge presented in the form of predicates 

and logical productions (rules). BOMD paradigm involves 

the construction of the optimization models consisting of 

objective functions and constraints in the explicit form. 

Because of this it is possible design the intelligent control 

systems which have the explanation ability – 

                                                           
1 This paper was prepared and sent to the  IASTED International 

conference on Robotics and Control Systems (RCS- 2016)  which 
unfortunately was cancelled 

answer questions “Why” and “How” when they produce 

control actions.  

       The main distinctive property of BOMD compared to 

traditional mathematical modeling is in that available data 

and knowledge are incomplete. This incompleteness leads 

to ambiguity of possible solutions – synthesized models. 

The problems arising in the synthesis of optimization 

models due to the incompleteness of the initial 

information can be overcome by constantly learning and 

correcting of these models. In this sense we can talk about 

learning models.    

      As in traditional mathematical modeling, the choice of 

model largely depends on variables type: logical, integer, 

real or mixed. The use of predicates which maps states of 

external environment in binary variables allows one to 

work with mixed variables. Binarization can be 

considered as a special case of application of such 

predicates.     

 
Figure 1. A system based the BOMD paradigm 

 

      The structure of the system that implements the 

BOMD principles is presented in Figure 1. Its main part is 

the subsystem of model building. Due to the 

nonstationarity of the external environment it is important  

provide the possibility of dynamic adjustment or 

correction of intelligent control models. Therefore, the 

Dynamic Model Corrector subsystem should contain a 

procedure for the estimation of obsolescence and 

forgetting data.     

 This paper mainly devoted to the ways of 

constructing objective functions and constraints from 
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experimental data which can be used for intelligent 

control systems developing. 

 If the optimization model has been synthesized, the 

control process is realised as shown on the Figure 2. The 

main element of the controller is the optimization model 

which is synthesized from data. 

 

 

 
 

Figure 2. BOMD-Model based controller 

 

 

2. Building Linear Optimization Model           

with Real Variables from Data 
 

2.1 Introduction and preliminaries 

 

Consider the real space ℝ𝑛 and the training sample 

set  𝑇𝑙 = {𝑋𝑘, 𝑦𝑘 , 𝛼𝑘}𝑘=1
𝑙 , where 𝑋𝑘 = (𝑥1

𝑘, … , 𝑥𝑛
𝑘) ∈

ℝ𝑛  − vectors or points; 𝑦𝑘  is a value of unknown 

function  𝑓: ℝ𝑛 → ℝ;    𝛼𝑘 = 0 if vector  𝑋𝑘 is admissible 

solution of the optimization problem which needs to be 

build, otherwise Boolean value  𝛼𝑘 = 1. As additional 

initial information we suppose: it is a priori known that 

the optimization model which is synthesized is linear: 

   𝑓(𝑋) = 〈𝑊, 𝑋〉 = 𝑤1𝑥1 +⋯+ 𝑤𝑖𝑥𝑖 +⋯+𝑤𝑛𝑥𝑛 + 𝑤0 , 
where coefficients  𝑤𝑖   and  𝑤0  are unknown. A solution 

𝑋 is admissible iff 

𝐴𝑋 ≤ 𝐵,  𝐴 = [𝑎𝑗𝑖]𝑚×𝑛, 𝑋 =

[
 
 
 
 
𝑥1
…
𝑥𝑖
…
𝑥𝑛]
 
 
 
 

,  𝐵 =

[
 
 
 
 
𝑏1
…
𝑏𝑗
…
𝑏𝑚]
 
 
 
 

. 

Matrix 𝐴 and vector 𝐵 are unknown. So, we have only 

initial incomplete information for all 𝑋𝑘 from the sample 

set 𝑇𝑙  in the form 

𝑓(𝑋𝑘) = 𝑦𝑘;     

 (𝛼𝑘 = 0)    ⇒   𝐴𝑋𝑘 ≤ 𝐵; 

 (𝛼𝑘 = 1)    ⇒   𝐴𝑋𝑘 > 𝐵; 

 We suppose without loss of generality that some of 

variables 𝑥1, … , 𝑥𝑛 describe the environment and other of 

these variables describes the control system, including its 

control parameters. We also suppose that the initial 

information contained in the sample set  𝑇𝑙   is exact, i.e. 

the formulation of the problem is deterministic. Therefore, 

if solving the problem will reduce to the contradiction 

indicating the nonlinearity, it is necessary either to revise 

the deliberate assumption of linearity of the model or to 

find errors in the initial information  𝑇𝑙.  Further, we show 

how such contradictions are detected. 

  

2.2 Building of the linear Constraints 

 

We will use the classical Rosenblatt-Novikoff Linear 

Error-Correction Procedure (RNLCP):  

     Λ0     =  (0, … ,0); 

Λ𝑡+1 = { 

Λ𝑡  ,                    𝑖𝑓  (1) 𝑖𝑠 𝑡𝑟𝑢𝑒;                      

Λ𝑡 + 𝑐𝑋𝑡  ,        𝑖𝑓  (2) 𝑖𝑠 𝑡𝑟𝑢𝑒;                      

Λ𝑡 − 𝑐𝑋𝑡 ,         𝑖𝑓  (3) 𝑖𝑠 𝑡𝑟𝑢𝑒;                      

 

(〈Λ𝑡 , 𝑋𝑡〉 > 0)⋀(Xt ∈ W1)⋁(〈Λ𝑡 , 𝑋𝑡〉 ≤ 0)⋀(Xt ∈ W0); (1) 
(〈Λ𝑡 , 𝑋𝑡〉 ≤ 0)⋀(𝑋𝑡 ∈ 𝑊1);                        (2) 

(〈Λ𝑡 , 𝑋𝑡〉 > 0)⋀(𝑋𝑡 ∈ 𝑊0).                        (3) 

The coefficient  𝑐  is chosen from the interval  0 < 𝑐 ≤ 1; 

𝑊0,𝑊1 ∈ ℝ
𝑛. 

 It's well known if  𝑐𝑜𝑛𝑣(𝑊0)⋂𝑐𝑜𝑛𝑣(𝑊1) = ∅, where  

𝑐𝑜𝑛𝑣(𝑊0)  and 𝑐𝑜𝑛𝑣(𝑊1)  are convex hulls of the sets 

W0  and  W1, then exists such unit vector Λ∗ and the real 

positive number  𝜌  that (𝛬∗, 𝑋𝑡) < −𝜌   for any  𝑋𝑡 ∈ 𝑊0 

and  (𝛬∗, 𝑋𝑡) > 𝜌   for any  𝑋𝑡 ∈ 𝑊1.   Under this 

conditions, the RNLCP finds the hyperplane   (Λ, 𝑋) = 0  

separating the sets 𝑊0  and  𝑊1 after  𝑘 ≤ 𝐷2/𝜌2  steps, 

where  

𝐷 = sup
𝑋∈𝑊0⋃𝑊1

‖𝑋‖. 

We suppose that 𝑋𝑡 = (𝑥1
𝑡 , … , 𝑥1𝑛

𝑡 , 1) is the vector 

extended by adding the additional component equal to 

one; so the equation of the hyperplane contains the 

constant term. 

 Denote 𝑇0 the set of vectors 𝑋𝑘 from the sample set 𝑇𝑙  
such that   𝛼𝑘 = 0 and 𝑇1  – the set of vectors 𝑋𝑘 such 

that  𝛼𝑘 = 1. If the assumption of linearity of the model is 

true, than the region of admissible solutions is a convex 

set. Then each point from the set  𝑇1    can be separated by 

some hyperplane from all points from the set  𝑇0. The idea 

on which building of linear constraints is based consists of 

finding the set of hyperplanes which separate together 

each point   𝑋𝑘 ∈ 𝑇1  from all points of the set  𝑇0. 

1. Initialize the set for memorizing hyperplanes 

which will be built:  𝔏 ≔ ∅.  
 𝑖 ≔ 1;   𝑇𝑖 ≔ 𝑇1. 

2. Choose the point   𝑋 ∈  𝑇𝑖  which is closest to the 

set of points  𝑇0.  

3. Using the RNLCP, build the hyperplane ℒ𝑖 
which separates the point 𝑋 from all points of the 

set  𝑇0. 

4. Memorize this hyperplane:   𝔏 ≔ 𝔏⋃{ℒ𝑖}. 
5. Denote 𝑆𝑖 the set the points from   𝑇1  which are 

separated from all points of the set  𝑇0  by the 

hyperplane ℒ𝑖  just as the point   𝑋. 

Reduce the set   𝑇𝑖 ≔  𝑇𝑖\𝑆𝑖. 
6. If   𝑇𝑖 ≠ ∅ then goto 2. 

7. End.  

The set of separating hyperplanes 𝔏 =

{ℒ1, … , ℒ𝑖 , … , ℒ𝑞} is constructed.  



 The next step is to select the minimum number     

hyperplanes from the set 𝔏 which are sufficient for linear 

separation of the sets   𝑇0  and  𝑇1 . 
 Denote   𝛽𝑝𝑗 = 𝛽𝑝𝑗(𝑋) = 1, if the hyperplane ℒ𝑗 

separates the point 𝑋𝑝 ∈ 𝑇1  from all points of the set  𝑇0 , 

otherwise   𝛽𝑝𝑗 = 0. The condition of separation of the 

point  𝑋𝑝  at least by one hyperplane takes the formal 

expression 

   𝛽𝑝1ℒ1⋁…⋁   𝛽𝑝𝑗ℒ𝑗⋁…⋁   𝛽𝑝𝑞ℒ𝑞 .             (4) 

 Symbol ℒ𝑗 in the expression (4) should be understood as 

a formal variable that denotes the hyperplane    ℒ𝑗. The 

hyperplane ℒ𝑗 is included in the set of hyperplanes 

separating the point 𝑋𝑝 iff  𝛽𝑝𝑗 = 0. 

Let  𝑇1 = {𝑋1, … , 𝑋𝑝, … , 𝑋𝜇}.  Consider the expression  

⋀
𝑝=1,𝜇̅̅̅̅̅

 ( 𝛽𝑝1ℒ1⋁…⋁   𝛽𝑝𝑗ℒ𝑗⋁…⋁   𝛽𝑝𝑞ℒ𝑞) .         (5) 

By a logical multiplication and use of the absorption law 

to the expression (5) we can obtain all possible sets of 

separating hyperplanes and then choose the shortest of 

them and denote it  𝔏 ̂ = {ℒ1̂, … , ℒ�̂�}. Below we'll explain 

why we should choose the shortest separating set. 

 Example 1.  Let 𝑛 = 2 and 19 point presented in 

Tables 1 and Table 2 are given.  

 

Table 1 

Points corresponding to the admissible solutions (  𝑇0 ) 
𝑇0 1 2 3 4 5 6 7 8 9 10 11 12 

𝑥1 2 2 3 4 4 5 6 6 9 9 11 12 

𝑥2 10 9 5 9 8 2 9 6 8 5 4 2 

 

Table 2 

Points which must be separated  

from the admissible points (  𝑇1 ) 
𝑇1 13 14 15 16 17 18 19 

𝑥1 1 3 5 8 12 12 17 

𝑥2 12 14 11 14 10 6 5 

 

 

The set of constructed hyperplanes 𝔏 = {ℒ1, … , ℒ7} is 

presented in Table 3. This set is redundant. In the next 

step we'll find the irreducible set of separating 

hyperplanes. 
 

Table 3 

Set 𝔏 of hyperplanes built by using the RNLCP 

Separated 

point 

index 

 

Hyperplane 

All 

separated 

points 

of  𝑇1  
13 ℒ1:    15𝑥1 − 3𝑥2 + 2 = 0 13 

14 ℒ2:       6𝑥1 − 3𝑥2 + 19 = 0 13,14 

15 ℒ3:               − 5𝑥2 + 52 = 0 13,14,15,16 

16 ℒ4:  −8𝑥1 − 4𝑥2 + 115 = 0 16,17,18,19 

17 ℒ5:   −19𝑥1 − 2𝑥2 + 244 = 0 17,19 

18 ℒ6:   −36𝑥1 − 2𝑥2 + 440 = 0 17,18,19 

19 ℒ7: −18𝑥1 − 26𝑥2 + 170 = 0 19 

 

 The Boolean expression that allows finding all 

possible irreducible collections of separating hyperplanes 

can be represented in the form (see Table 4) 

(ℒ1⋁ℒ2⋁ℒ3) ∧ (ℒ2⋁ℒ3) ∧ ℒ3 ∧ (ℒ3⋁ℒ4) ∧ (ℒ4⋁ℒ5⋁ℒ6) ∧ 

∧ (ℒ4⋁ℒ6) ∧ (ℒ4⋁ℒ5⋁ℒ6⋁ℒ7) = ℒ3ℒ4 ∨ ℒ3ℒ6. 

From the set of dead-end separators is more preferable 

ℒ3ℒ4  because hyperplane ℒ4 separates four points, and the 

hyperplane ℒ6 separates only three points. So, we chose 

the couple hyperplanes   ℒ3ℒ4.  Two separating hyperplanes 

can be made more precise. The hyperplane ℒ3 separates the set 

𝑇1
3 = {𝑋13, 𝑋14, 𝑋15, 𝑋16} from the set  𝑇0. By using the 

RNLCP we find more precise linear separator (Figure 3) 

   ℒ3
∗ = 2x1 − 17x2 + 167 = 0. 

Similarly we find 

   ℒ4
∗ = −12𝑥1 − 6𝑥2 + 158 = 0. 

 

Table 4 

The logical table of linear separation of sets  𝑇0 and   𝑇1  
Separated points  13 14 15 16 17 18 19 

Hyperplanes 

ℒ1 1       

ℒ2 1 1      

ℒ3 1 1 1 1    

ℒ4    1 1 1 1 

ℒ5     1  1 

ℒ6     1 1 1 

ℒ7       1 

 

 
Figure 3. The equations of the hyperplanes    ℒ3

∗  and    ℒ4
∗ 

separating the sets  T0 (black points) and  T1 (white 

points) 

 

 

 As a result, the region of admissible solutions has the 

form 

{

2x1 − 17x2 + 167 ≤ 0;
−12𝑥1 − 6𝑥2 + 158 ≤ 0;

𝑥1, 𝑥2 ≥ 0.
 

 

2.3 Building of the Linear Objective Function 
 

Next we want to find approximation to the linear 

unknown objective function which the best fits to the 

given real data  {𝑋𝑘 , 𝑦𝑘}𝑘=1
𝑙 , where 𝑋𝑘 = (𝑥1

𝑘, … , 𝑥𝑛
𝑘) ∈



ℝ𝑛  and  𝑦𝑗 is a value of unknown function  𝑓:ℝ𝑛 → ℝ. 

So, we assume the linear objective function can be 

presented in the form 

𝑓(𝑥1, … , 𝑥𝑛) = 𝑤1𝑥1 +⋯+ 𝑤𝑛𝑥𝑛 +𝑤0 = 〈𝑊, 𝑋〉 + 𝑤0,  

which need to be maximized. 

 For the finding 𝑊 and 𝑤0  the Method of Least 

Squares of can be used as well as the SVM Linear 

Regression which leads to the optimization problem  

{
 
 

 
 1

2
〈𝑊,𝑊〉 + 𝐶∑(𝜉𝑘

+ + 𝜉𝑘
−) → min

𝑊,𝑤0,𝜉
+,𝜉−

;

𝑙

𝑘=1

𝑦𝑘 − 휀 − 𝜉𝑘
− ≤ 〈𝑊,𝑋𝑘〉 + w0 ≤ 𝑦𝑘 + 휀 + 𝜉𝑘

+;

    𝜉𝑘
+ ≥ 0; 𝜉𝑘

− ≥ 0;    𝑘 = 1,… , 𝑙,

 

 

where   𝜉𝑘
+ and   𝜉𝑘

− are additional slack variables; 

𝜉+ = (𝜉1
+, … , 𝜉𝑙

+);    𝜉− = (𝜉1
−, … , 𝜉𝑙

−); 
𝐶     is the regularization parameter;  휀  is the parameter  

set by expert.  

 The SVM method is more preferable since it aims at 

minimizing the norm ‖𝑊‖ = √〈𝑊,𝑊〉 of the vector 𝑊 

but it is more time consuming than the Method of Least 

Squares. Minimizing the norm ‖𝑊‖ leads to a reduction 

of the complexity of the synthesized model. 

 We propose another way of constructing linear 

objective function that allows checking the consistency of 

source data to assumed linear hypothesis. 

 We assume that in the sample there are no identical 

points and without loss of generality we assume that  𝑦1 >
⋯ > 𝑦𝑘 > ⋯ > 𝑦𝑙   (if not, one can renumber these data).  

 It is easy to prove that an unknown function built 

from the data 𝑇𝑙  in reality can be linear if and only if for 

any 𝑘 = 2,3,… , 𝑙 − 1 the set of points {𝑋1, … , 𝑋𝑘} can be 

separated from the set of points {𝑋𝑘+1, … , 𝑋𝑙} by some 

hyperplane  〈�̂�, 𝑋〉 + 𝑑𝑘 = 0. 

 Really, let an unknown function has the form 

𝑓(𝑥1, … , 𝑥𝑛) = 〈𝑊, 𝑋〉 + 𝑤0   and 

  𝑦1(𝑋1) > ⋯ > 𝑦𝑘(𝑋𝑘) > ⋯ > 𝑦𝑙(𝑋𝑙). 
Then we have the inequalities 
  〈𝑊, 𝑋1〉 > ⋯ > 〈𝑊, 𝑋𝑘〉 > 〈𝑊, 𝑋𝑘+1〉 > ⋯ > ⋯ > 〈𝑊,𝑋𝑙〉. (6) 

Putting 𝑑𝑘 = (𝑦𝑘+1 − 〈𝑊,𝑋𝑘+1〉 − (𝑦𝑘 − 〈𝑊,𝑋𝑘〉)/2   we 

obtain the required hyperplane  〈𝑊, 𝑋〉 + 𝑑𝑘 = 0 for 

any  𝑘 = 2,3, … , 𝑙 − 1. 

 Conversely, if 〈𝑊, 𝑋〉 + 𝑑𝑘 = 0 for any  𝑘 =
2,3, … , 𝑙 − 1 are the separating hyperplanes then the 

expression (6) is a compatible system of inequalities, so 

one can find its linear solution in the form  〈�̂�, X〉 + 𝑤0̂ 

by using the RNLCP.  

 The desired vector is obtained as a result of executing 

the following calculations: 

  𝑊0 = (0,… ,0); 

𝑊𝑡 = {
𝑊𝑡−1,                                𝑖𝑓  〈𝑊𝑡−1, 𝑋𝑗 − 𝑋𝑞〉 > 0;

𝑊𝑡−1 + (𝑋𝑗 − 𝑋𝑞), 𝑖𝑓  〈𝑊𝑡−1, 𝑋𝑗 − 𝑋𝑞〉 ≤ 0,
 

where 1 ≤ 𝑗 < 𝑞 ≤ 𝑙 (recall that 𝑦𝑗 > 𝑦𝑞); the 

computation steps 𝑡 are repeated cyclically for all  𝑇 =
𝑙 (𝑙 − 1)/2  pairs (𝑗, 𝑞) until 𝑊𝑡 = 𝑊𝑡−1 is executed 𝑇 

times.  Denote the found vector �̂�. 

 The value of 𝑤0 which is not of special importance 

for the optimization model does can be chosen equal to  

𝑤0̂ =
1

𝑙
(∑ 𝑦𝑘 −𝑘 ∑ 〈�̂�,𝑋𝑘〉𝑘 ). 

If the search procedure of the vector �̂� gets caught in an 

endless loop (or the number of steps exceeds the 

allowable value), the hypothesis of linearity of the 

objective function is not confirmed. 

 As the result of building of objective function and 

constraints we’ve obtained the model  

{
 

 
〈�̂�, X〉 + 𝑤0̂ → max;

ℒ1̂(𝑋) ≤ 0;
………… . .
ℒ�̂�(𝑋) ≤ 0.

 

 

2.4 Justification of the Models Built from Data based 

on the Kolmogorov Complexity Theory 

 

Heuristic approach to the building of shortest optimization 

models from data based on the principle of Occam's razor 

[3] can be justified on the base of the theory of 

Kolmogorov complexity [6]. This principle can be 

interpreted as a choice among competing hypotheses 

when the hypothesis with the fewest assumptions should 

be selected. In particular, Solomonoff's theory of 

inductive inference [9] is a mathematically formalised 

Occam's razor, namely:  the shortest computable models 

have more weight compared to other. Under the shortest 

optimization models we understand such ones which have 

the shortest description in the form of specially-designed 

string of characters. 

 The model in the form 

𝑓(𝑋) = 𝑤1𝑥1 +⋯+ 𝑤𝑛𝑥𝑛 + 𝑤0 = 〈𝑊, 𝑋〉 + 𝑤0 → 𝑚𝑎𝑥; 

 [𝑎𝑗𝑖]𝑚×𝑛

[
 
 
 
 
𝑥1
…
𝑥1
…
𝑥𝑛]
 
 
 
 

≤

[
 
 
 
 
𝑏1
…
𝑏𝑗
…
𝑏𝑚]
 
 
 
 

; 

with the parameters 𝑛,𝑚,𝑊,𝑤0, 𝐴, 𝐵 is the individual 

representative of the a class 𝕃  models of linear 

programming. The synthesized model   as a rule does not 

coincide with the true unknown model, but    

approximates it. 

 The synthesized model is called a consistent 

(consistent hypothesis)  if the substitution points from the 

training sample set  𝑇𝑙 = {𝑋𝑘 , 𝑦𝑘 , 𝛼𝑘}𝑘=1
𝑙  in the objective 

function and the linear inequality of this model satisfy the 

following conditions:  

〈�̂�, 𝑋𝑘〉 + 𝑤0̂ = 𝑦𝑘;   

ℒ�̂�(𝑋𝑘) ≤ 0 𝑖𝑓 𝛼𝑘 = 0; 

ℒ�̂�(𝑋𝑘) > 0 𝑖𝑓 𝛼𝑘 = 1; 

𝑘 = 1,… , 𝑙. 
Let’s denote a consistent synthesized model ℳ𝑇. 

 It should be noted that in the wide family of models 𝕃 

there is a narrower subclass of consistent models  𝕃T. A 

choice of the consistent model from the subclass  𝕃T ⊂ 𝕃 

is complicated and incorrect by Hadamard task that 

requires serious justification.  



 

 Taking in account that all proposed in this paper 

methods and algorithms designed for computer 

realization, we need to narrow the considered family of 

the consistent models to finite models, restricting the 

representation of rational numbers by values belonging to  

the interval, which is defined with the bitness of the 

computer used. 

 We will call the Kolmogorov complexity of the 

consistent synthesized model  ℳT for a given a Turing 

machine U 

𝐾𝐶𝑈( ℳ𝑇) = 𝑚𝑖𝑛{|𝑝|: 𝑈(𝑝) = 𝑠�̂� ∗ 𝑠𝑤0̂ ∗ 𝑠𝔏}, 

where |𝑝| is the length of the binary string p such that a 

Turing machine 𝑈 given an input string 𝑝  will fully 

restore this synthesized model ℳT in the form of string 

description sŴ ∗ sw0̂ ∗ s𝔏 (concatenation) of all 

components �̂�, 𝑤0̂, 𝔏 of the model  ℳT. 
 We will call a Turing machine 𝑈𝑠 the generator of the 

string 𝑠 if exists such binary string 𝑝  that 𝑈𝑠(𝑝) = 𝑠  and 

denote  𝒰s all possible generators for any string   𝑠. 
 Denote exact Kolmogorov complexity of the 

model ℳ𝑇  

𝐾𝐶( ℳ𝑇) = 𝑚𝑖𝑛
𝑈∈𝒰𝑠

𝐾𝐶𝑈( ℳ𝑇) . 

Because of 𝐾𝐶( ℳ𝑇) is non-computable, we can only 

obtain some upper bound ℎ such that  𝐾𝐶( ℳ𝑇) < ℎ. 

 

 Theorem 1 [5].  Let a drawing of any training sample 

from the set of all possible samples is equally probable 

and the consistent model  ℳ𝑇 which is built from the 

training sample 𝑇𝑙    has an estimation of exact 

Kolmogorov complexity  𝐾𝐶( ℳ𝑇) < ℎ. Then this model 

is non-random (regular) with probability not less 1 − 휀  if  

𝑙0 ≥ (ℎ + log (1/휀))/𝑙𝑜𝑔(⌈�̂�/𝛿⌉ − 2), 
where �̂� = min

𝑋∈𝑇1
𝜌(𝑋, 𝑐𝑜𝑛𝑣(𝑇0);   𝜌(𝑋, 𝑐𝑜𝑛𝑣(𝑇0)  is 

Euclidean distance from point 𝑋 to the convex hull of the  
set 𝑇0; 휀 > 0;  𝛿 is the module of the smallest rational 

number which can be presented  in the format used by the 

computer; 𝑙0 = |𝑇0| = |{𝑋𝑘: 𝛼𝑘 = 0}|. 
 

 For example, 𝑙0(휀 = 0.01,  �̂� = 1, 𝛿 = 10−4, ℎ =
3000) ≈ 230 and then  𝑙 = 𝑙0 + 𝑙1 is approximately equal 

to  460. 

 

 The upper bound ℎ of the exact Kolmogorov 

complexity can be found by summarizing the lengths of 

all model  ℳT  components which should be represented 

in the form of binary string.  This implies the need for 

most compressed synthesized models and the usefulness 

of the SVM approach which provides minimization of 

norms of the vectors both functions, and constraints. 

 

 

3. Building Optimization Model 

      with Boolean Variables from Data 
 

When the variables are Boolean, linear and nonlinear 

cases not need be necessarily divided if for the synthesis 

of the objective function and constraints binary trees used 

which have the property of functional completeness. 

Decision trees are widely used for a problem solving on 

the base of empirical generalization. This issue is devoted 

to the extensive scientific literature. [8].   

 If there is a priori assumption about the linearity of 

the objective function, in some cases it is useful to apply 

the pseudo-Boolean regression [2]. 

 Now we consider the Boolean space 𝔹𝑛 and the 

training sample set  𝑇𝑙 = {𝑋𝑘 , 𝑦𝑘 , 𝛼𝑘}𝑘=1
𝑙 , where   𝑋𝑘 =

(𝑥1
𝑘, … , 𝑥𝑛

𝑘) ∈ 𝔹𝑛 ; 𝑦𝑘  is a value of unknown pseudo-

Boolean function  𝑓: 𝔹𝑛 → ℝ;    𝛼𝑘 = 0 if a vector 𝑋𝑘  is 

admissible solution of the optimization problem which 

needs to be build, otherwise Boolean value  𝛼𝑘 = 1. 

 We’ll use regression tree to build approximation 𝑓 ̂ of 

the unknown objective function and classification tree to 

build the approximation of the admissible solution 

region Ω̂. A consistent model  ℳT  built from data 𝑇𝑙  must 

satisfy the following conditions: if   𝛼𝑘 = 0 then  𝑋𝑘 ∈ Ω̂; 

if   𝛼𝑘 = 1 then 𝑋𝑘 ∉ Ω̂; 𝑓 ̂(𝑋𝑘) = 𝑦𝑘 for all   𝑘 = 1,… , 𝑙. 
 We omit detailed descriptions of well-known 

procedures for the synthesis of regression and 

classification trees [7]. Recall that binary tree defines 

specific set of orthogonal conjunctions such that any 

conjunction corresponds to the function value (for the 

regression tree) or the class number (for the classification 

tree). So, when the regression tree 𝒯𝑓 ̂ and the 

classification tree 𝒯Ω̂ will be built, we’ll have two sets of 

conjunction 𝒦𝑓 ̂ and  𝒦Ω̂. Any conjunction 𝐾 ∈   𝒦Ω̂ is 

drawn into 1   (𝐾(𝑋) = 1) only if 𝑋 ∈ Ω̂ (when 𝑋 is 

admissible solution), else if   𝐾(𝑋) = 0 then  𝑋 ∉ Ω̂. 

 There exists a method which allows combine both 

tree 𝒯𝑓 ̂ and 𝒯Ω̂ to obtain pseudo-Boolean optimization 

model.  Let's show this method with the following  

 Example 2. The training sample (𝑛 = 4, 𝑙 = 8) is 

presented in Table 5. 

Table 5 

The training sample  (𝑛 = 4) 

 
 

At first we choose for example the conjunction 𝐾2 = 𝑥1𝑥2̅̅ ̅ 
which allows separate points with a value �̅� = 2 of the 

object function from all other points contained in Table 5. 

Similarly,    𝐾0,5 = 𝑥1̅̅̅ 𝑥2̅̅ ̅,   𝐾1 = 𝑥1̅̅̅ 𝑥2𝑥4 ,   𝐾3 = 𝑥1𝑥2𝑥3̅̅ ̅ , 
𝐾∅ = 𝑥1𝑥2𝑥3, where conjunction 𝐾∅ corresponds the 

points for which 𝛼 = 1.  

 The trees presented in Figure 4 correspond the 

conjunctions  𝐾2 (A),     𝐾0,5 (B),   𝐾1(C),  𝐾3 (D), 𝐾∅(E). 

Regression decision tree obtained as a result of synthesis 

is shown in Figure 4 F. To achieve the maximum value of 



the objective function according to the synthesized 

decision tree (F) one should assign the following values of 

control variables:  𝑥1 = 1;  𝑥2 = 1;  𝑥3 = 0. 

 

 

 
Figure 4. Synthesis of the combined regression tree 

 

 

 Let us mention one important result obtained by L. G. 

Babat [1] which allows in some cases estimate a number 

of elements of partitioning the interval of possible values 

of the linear pseudo-Boolean objective function   on the 

classes of equivalent values.  

 Consider the Linear pseudo-Boolean function 𝑓(𝑋) =
∑ 𝑐𝑖𝑥𝑖
𝑛
𝑖=1  with the coefficients  𝑐𝑖 > 0i. Let's say that the 

values 𝑓(𝐴)   and 𝑓(𝐵) belong to the same 휀-group (휀 >
0) if  

|𝑓(𝐴) − 𝑓(𝐵)|/𝑚𝑖𝑛{𝑓(𝐴), 𝑓(𝐵)} ≤  휀 
or    

𝑚𝑎𝑥{𝑓(𝐴), 𝑓(𝐵)}/𝑚𝑖𝑛{𝑓(𝐴), 𝑓(𝐵)} ≤  1 + 휀. 
 

 Theorem 2 [1]. For any 휀 > 0 the function 𝑓 values at 

the vertices of a unit cube 𝔹𝑛 can be divided into 휀-

groups so that quantity of those groups will not exceed the 

number 

𝑞𝑛 = 𝑛(1 + 𝑙𝑜𝑔2(1 + 휀)). 
 So, in some cases we can divide the interval 

[min
𝑘
𝑦𝑘 , max

𝑘
𝑦𝑘]   on 𝑞𝑛 pieces and assign to each piece 

the average of all values 𝑦𝑘  from the training sample 

which hits in this piece. These averages  𝑦1̅̅̅̅ , … , 𝑦𝑞𝑛̅̅ ̅̅   can be 

used for approximation of sample values 𝑦𝑘  and be 

considered as the set of labels for the leaves of the 

synthesized decision tree. By adding one more label  ∅, 

corresponding to solutions that are not admissible, we can 

assign labels for all points from the training sample and 

then synthesize classification tree.  

 We named this method the CBFA – Classification 

Based Function Approximation. 

 There is another method that allows to directly 

synthesizing unknown linear pseudo-Boolean function 

𝑓(𝑋) = 𝑤1𝑥1 +⋯+ 𝑤𝑛𝑥𝑛 + 𝑤0  by use the training 

sample 𝑇𝑙 . This method is based on the solution of the 

following problem: 

𝑤0
2 +∑𝑤𝑖

2 +

𝑛

𝑖=1

𝛾∑휀𝑘
2 → 𝑚𝑖𝑛;

𝑙

𝑘=1

 

휀𝑘 + 𝑤0 +∑ 𝑤𝑖𝑥𝑖
(𝑘)
  ≥ 𝑦𝑘

𝑛

𝑖=1
; 

휀𝑘 − 𝑤0 −∑ 𝑤𝑖𝑥𝑖
(𝑘)
  ≥ −𝑦𝑘

𝑛

𝑖=1
; 

휀𝑘 ≥ 0;   𝑘 = 1,… 𝑙, 
 

where a constant 𝛾 is a parameter of the algorithm.  

 If the solution �̂�0, �̂�1, … , �̂�𝑖 , … , �̂�𝑛   of this 

optimization problem is found then we have the 

synthesized pseudo-Boolean function  

𝑓(𝑋) = �̂�0 + ∑ �̂�𝑖𝑥𝑖   
𝑛
𝑖=1 . 

After then we can use the classification tree 𝒯Ω̂  obtained 

by learning from the sample 𝑇𝑙 . Let the tree 𝒯Ω̂  

corresponds the set of conjunction presented in the 

expression  𝒦Ω̂ = 𝐾1⋁…⋁𝐾𝑟⋁…⋁𝐾𝑠 and 

𝐾𝑟 = 𝑥𝑖1𝑟
𝜎
𝑖1
𝑟

∧ …∧ 𝑥
𝑖𝜈𝑟
𝑟  

𝜎𝑖𝜈𝑟
𝑟

 , 

where, as usually,  𝑥𝛿 = 𝑥 if 𝛿 = 1 and  𝑥𝛿 = �̅�  if 𝛿 = 0. 

Let’s put in correspondence to the each conjunction 𝐾𝑟  its 

weight  𝑉𝑟 = �̂�𝑖1𝑟𝜎𝑖1𝑟 +⋯+ �̂�𝑖𝜈𝑟
𝑟 𝜎𝑖𝜈𝑟

𝑟  and denote  𝑉𝜃 =

𝑚𝑎𝑥{  𝑉1, … ,   𝑉𝑟 , … ,   𝑉𝑠}. Then the optimal values of 

control variables are 𝑥
𝑖1
𝜃 = 𝜎𝑖1𝜃

,... , 𝑥𝑖𝜈𝜃
𝜃 = 𝜎𝑖𝜈𝜃

𝜃 . 

 

 

4. Observations on the Construction of 

Nonlinear Optimization Models from Data 

 
The above Classification Based Function Approximation 

method (СBFA) in the case when variables are Boolean 

provides ability of building both linear and nonlinear 

models. But in many cases the building of nonlinear 

regression and nonlinear constraints requires additional 

information about the type of nonlinearity. If such 

additional information available, on its basis it is possible 

to reduce the synthesis of nonlinear model to linear 

synthesis. 

 For example, a multiplicative function of 𝑛 real 

variables of the form  

𝑓(𝑋) =∏𝑥𝑖
𝑎𝑖

𝑛

𝑖=1

 

with unknown vector of coefficients 𝑎1, … , 𝑎𝑖 , … , 𝑎𝑛 by 

taking the logarithm is reduced to the linear function 

𝑎1 𝑙𝑛 𝑥1 +⋯+ 𝑎𝑖 𝑙𝑛 𝑥𝑖 +⋯+ 𝑎𝑛 𝑙𝑛 𝑥𝑛 

with respect to the variables 𝑦𝑖 = 𝑙𝑛 𝑥𝑖. 
  

 In the paper [2] it is proposed an approach to 

construction of the nonlinear pseudo-Boolean regression 

based on data transformation. For this goal a map 

ℱ: {0,1}𝑛 → {0,1}𝑚 must be built, where initial space is 

 {0,1}𝑛 = ℝ𝑛 and resulting space is  {0,1}𝑚.  Components 

of this new space consist of monomials involving the 

components of  {0,1}𝑛. For example, some monomial  

𝑥𝑖1�̅�𝑖2𝑥𝑖3   may correspond to some variable  𝑦𝑗 .  



 By this way, the nonlinear regression can be reduced 

to the synthesis of the linear regression 

 

𝑓(𝑌) = �̂�0 + ∑ �̂�𝑗𝑦𝑗   
𝑚
𝑗=1 . 

 

 

5. Conclusion 
 

In this paper we have shown, how can be synthesized 

models of the optimal control on the basis of samples or 

precedents. The proposed BOMD approach is based on 

empirical induction which is directed to obtaining 

regularities in the form of empirical optimization models 

which are synthesized in analytical form. 

 We follow the Kolmogorov idea about regularity as 

non-randomness. This allows us to estimate the 

probability of non-random model selection from the set of 

admissible models which are consistent to the sample or 

to given initial data. 

 As it is shown in the paper, the construction of 

optimization models of control from data can be 

implemented by different ways. The choice of method of 

model synthesis is determined by the accuracy 

requirements and resource constraints. 

 

 We do not claim to be exhaustive in the presentation 

of results in the field of research. In particular, beyond the 

scope of this article are left the questions of dynamic 

adaptation and reconfiguration of synthesized models,    

associated with the problem of "forgetting" of obsolete 

data. These issues are expected to devote our future 

research. 
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